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Abstract

An exact solution is presented for the static and dynamic asymmetric response of a disk governed by
Mindlin’s plate equations forced by a pressure that varies radially as r”. The static solution agrees with a
modal solution adopting the dynamic Mindlin’s plate equations in the limit when excitation frequency
vanishes. This solution is useful in sizing magnitude and shape of surface asymmetries on a disk from
pressure loading with slight eccentricity and circumferential non-uniformity.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Mindlin’s plate equations [1] represent a consistent approximation to the three-dimensional
elasto-dynamic equations. One essential feature of these equations is the finite speed of shear
waves which lacks in the classical Euler equations. In Cartesian co-ordinates, the equations are
separable, yet the solution converges slowly since the dependence along one axis is in terms of
hyperbolic functions. For a disk subjected to axisymmetric loading, exact solutions to Mindlin’s
static and dynamic equations have been treated extensively in the literature. However, the analysis
of the static and dynamic problems of a disk loaded asymmetrically is rare.

Karunasena et al. [2] treat the static axisymmetric response of a disk with annular supports
adopting Mindlin’s plate equations. Irons and Kennedy [3] treat the non-linear axisymmetric
frequency response of annular disks. Xiang et al. [4] treat linear axisymmetric frequency response
with concentric stiffeners. Soamidas and Ganesan [5] analyze variable thickness polar orthotropic
disks. Since 1989, most publications on disks concern magnetic storage devices and focus on
rotating thin disks with axisymmetric loading (see Refs. [6-9]). Jia and Lee [10] and Raman and
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Mote [11] treat linear asymmetric frequency response of a disk with angular imperfections in
properties adopting the classical Euler’s equation. Liew and Yang [12,13] solve the three-
dimensional free vibration problem of a solid disk and annular plate for symmetric and
asymmetric modes by an approximate polynomial-Ritz method.

In what follows, the general static Mindlin’s equations are solved exactly for a disk loaded by
an asymmetric pressure of the form p(r,0) = p, " cos n0 acting over a footprint of radius r,,
where (r, 0) are radial and circumferential co-ordinates and 7 is circumferential wave number. This
loading simulates the asymmetry in pressure from eccentricity and circumferential non-
uniformity.

In the axisymmetric case, the state vector of dependent variables S has four components;
displacement w, radial rotation V,, and radial shear and moment resultants Q,, M,, = S =
w,, Oy, M,.}T. The coupled fourth order system of equations yields four primitives and
independent constants sufficient to satisfy continuity of S at an interface of two adjacent disk
segments. In the asymmetric case, S includes two new dependent variables; circumferential
rotation ¥, and torsional moment resultant M,y = S = {w,¥,, ¥y, O, M,.V,M,.Q}T. The
equilibrium equation in , raises the order of the system from fourth to sixth allowing for the
two additional primitives. To solve the coupled equations in {w, ¥,, t//H}T, uncoupled equations in
each variable are needed. Applying the Helmholtz decomposition to the rotation vector ¥ =
{v,, wg}T facilitates the process. ¥ is expressed as the sum of the gradient of a scalar function and
the curl of a vector function, ¥ = Vg + V x I, also known as the Helmholtz decomposition. In
the dynamic case, g is related to w by the inertia term, while in the static case g is independent of w.
The Helmholtz decomposition also applies to the particular solution.

Results from the static solution coincide with results from a different solution in which S is
expanded in terms of the dynamic eigenfunctions. Sections 1 and 2 derive exact solutions of the
static and dynamic Mindlin’s equations for a disk. Section 3 compares results from the two
solutions and presents sensitivity of displacement to disk thickness %, disk radius r;, and footprint
radius 7,.

2. Static analysis
Mindlin’s static plate equations may be written in vector form as

g[(l — V¥ + (1 +v)V®| — kGh (¥ + Vw) =0, (1)

ER’

Gh(V*w + & =0, &=V-¥, D=—"—

)
where ¥ is the vector of rotations, w is the transverse displacement, (p,v) are the density and
Poisson ratio, (E, G) are Young’s and shear moduli, x is the shear constant, / is the thickness, p is
the applied pressure, V? is the Laplacian and V is the gradient operator. Taking the divergence of

Eq. (1),
DV?® — kGh(® + V*w) = 0. (3)
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Eliminating ¢ from Egs. (2) and (3),

1 1
T R 2
VW—[D KGhv}p' 4)
Eliminating V?w from Egs. (2) and (3) yields
DV?® = —p. (5)
Taking the curl of Eq. (1),
D
[5(1 ) Vi KGh] (Vx¥)=0, (6)

from which it can be inferred that (V x ¥) is not a function of w while ¥ may be expressed as

¥ =Vyg+VxT, (7

where I' is a vector potential for ¥ independent of w. Substituting Eq. (7) in Eq. (5) using the
definition of @ yields

DV*g = —p. (8)
Substituting Eq. (7) into Eq. (6) using the identity
VxVxA=V(V-A) - VA 9)
produces
D 2 2
5(1 — WV —kGh| VT =0. (10)
Defining © = V> T in Eq. (10) yields
12k
[Vz—ﬁ]rzo. (11)

Furthermore, since t and ¥ are orthogonal, and ¥ is in the plane of the disk, then t = (0, 0, .)
and I' = (0,0, 1,).
For a disk with radius r;, assume separable expressions for p(r,0) :

p(r,0) = ppu(H(r) — H(r — rp))r'" cos n0, (12)

where r, is footprint radius. For n>2, a p(r,0) uniform along r with m =0 in Eq. (12) is
discontinuous along 0 at » = 0. This sets the constraint that m>1. Based on the forcing function
in Eq. (12), w, ¥,, Y, take the form

w(r, 0) = wy(r)cosnl, ,(r,0) =,,(r)cosnl, y(r,0) =y, (r)sinno. (13)
Expanding Eq. (7) in cylindrical co-ordinates,

0 n n 0
s Won) = (53 —;> gn + (;, —5> Iz (14)



156 M. El-Raheb | Journal of Sound and Vibration 261 (2003) 153-168

From Egs. (4), (8) and (10), the homogeneous solutions of w,, g, and I, are

4 4
walr) =Y CyRyj(r),  ga(r) =Y CyRi(r), (15a,b)
j=1 j=1
an(V) = CSnIn(k‘cr) + CGnKn(krr)a kr =V 12K/h, (150)

where R,;(r) are four primitives of the Vi operator and I, K,, are modified Bessel functions of
order n.

In what follows, the subscript z will be dropped from all dependent variables and constants of
integration for shortness. Also subscripts 2 and p will refer to the homogeneous and particular
solutions, respectively. Eq. (4) admits primitives in the form

R(r) = r~. (16a)
Substituting Eq. (16a) into the homogeneous part of Eq. (4) yields the characteristic equation
(o — m®)((o — 2)*> — n?) = 0. (16b)

For n =0, Eq. (16b) admits a double root « = 0, and a double root & = 2 yielding a homogeneous
solution:

wi(r) = C1* + G Inr+ C3+ Cy Inr, n=0. (16¢)
For n>=2, Eq. (16b) admits the roots
o= +n, o= +n-+2 (16d)
with solution
4
wy(r) = Z Gir, n=2. (17)
=

To determine the contribution of Vg to {{,, 4} in Eq. (14), eliminate ¥, from the first of Eqs. (1)
and (2):

3 (1 —n?) 2 (1+wvo p)
"2y Ky o= == — 2 — . 18
wi+rwr+ r2 l//r r‘//r ( }’+(1—V)8}" VW+KGh ( )
From Egs. (14) and (15b), the homogeneous solution of s, has the form
lﬁrh(}’) = Dli’nil + Dzl"inil + D3}’n+1 + D4Vﬁn+1. (19)

Substituting Egs. (19) and (17) into Eq. (18) and equating coefficients of the same powers of r to
zero yields

1
— D1k +4D5(1 4+ n) = Cik?n + 4C5(1 +n)<—2+ : fin)
1+vn
1—v )’

— D3i? = Gil2(n+2), —Dyk? = Cyk*(—n+2). (20a)

— Dyl +4Dy(1 —n) = —Cok?n — 4Cy(1 — n) (2 +
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Solving for D; in terms of C; :

B 8n(1 + n) B
Dy = —nC 21— vy GD3; = —(n+2)G,
8n(1 —
Dy=nCy+ ML= o (Lt (20b)
(=)
From Eq. (2),
r 1
Vo = — <¢:~h oVt Vzwh)- 21
From Eqgs. (14) and (15b), the form of v, is
lp()h(}’) = Elrnil + Ezrinil + E3}"n+1 + E4l’7n+1. (22)

Substituting Eqgs. (17), (19) and (22) into Eq. (21) and equating coefficients of equal powers
of r yields

8n(1 + n)

El :nC1 +m€3, E3 = I’lC3,

8n(1 —n)
E,=nC+————=C4, Es=nCy. 23
2=n 2+k§(1—v) 45 4 =nly (23)

Adding the contribution of V x I in Eq. (14) to Egs. (19) and (22) determines the complete
homogeneous solution of {y,, ¥} :

W, (r) = D™ 4+ Dyl 4 Dyt Dyt ;(Csln(krr) + CoK,(kar)),
Yon(r) = Eir"™ '+ Eyr " 4 Esr™t 4 Egr T — ke (CsT (epr) + CoK (ko). (24)

The particular solution w), of Eq. (4) is determined by the method of variation of parameters. In
Eq. (17), assume C; = Ci(r) :

(1) Evaluate w/, w”, w", and w" where () is partial derivative with respect to r.

(2) For the first three derivatives equate terms including C)(r) to zero.
(3) Substitute the derivatives in Eq. (4).

This yields four simultaneous equations in C;. For n>=2, changing variables to

D
B =-—Cir)yr > (25a)
’ Pm
eliminates the r dependence from these equations yielding
Mp =1, (25b)

My;=1, M;=uw,
Msj = ooy — 1), My;=o(; — Dy —2), (=14,

Ul' - 541': B = {ﬁl’ﬁb ﬁ3’ ﬁ4}Ts
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where d4; is the Kronecker delta. Solving for ; in Eq. (25b), integrating C;(r) in Eq. (25a), then
substituting C; back into Eq. (17) produces '

( ) P 24: ﬂ ( pAtm n(m2 - n2)r2+m> pm< pm+a nr;n+2>
Wpl\F) = —C i — = — — 5
! D =1 \4+m— % 24 m— o D Mypna Pyan2 2
2 2 I
= ) — = 26
:umn] ((m +j) n )5 1// 6(1 _ V)K ( )
Similarly, the particular solution g,(r) in Eq. (8) is
p rm+4
gp(r) = —= (27)

D :umn4,umn2
Since the Helmholtz decomposition (14) also applies to the particular solution (i, /,), then

39y P~ , (m 44 Do (1 + 43
'70)1)( ) = J Z ﬁ/ =

or / 4—|—Wl—OC' D HpmnaPpan2 ’
3+m m+3
ngp pm pm nr
Yop(r) = — —- Bt = (- (28)
? Z / 4+m— o) D Honna 2

When p,,,, = 0, the particular solutlons in Egs. (26) and (28) reduce to
o o [ rm+2
(1) = 5 6 () - i’i{r Inr— —}

2n D (m+2+n)
| 1 | | 2ppmtd
= 1 =——11 — 1= n+2
=) {<2< n+1>m 4< (n+1)2>>r +(m+2+n)umn4}’
1 pp 0Z,(r) L pm &p(r)
= ——_—— 2 -
lpr(r) 47’12 D 67’ > l/’@() 41’! D ¥ > ( 9d)
and when g, = 0, they reduce to
pun 72
wy(r) = p(r) —
g 2D Hnn2 g D :umn20
rm+4
gp(r) = <r”1nr—7m+4+n>,
Pm 0gy(r) Pm Sp(1)
_ — A 29b
00 = LS ) = 5 (290)

Eq. (17) and (24) for the homogeneous parts, and Egs. (26) and (28) or alternatively Eq. (29) for
the particular parts, represent the exact solution to the problem.
Constitutive relations for moment and shear resultants are

MW_D(‘L;"""(%"";‘/’H)): M@@—D(Vlﬁ;+%+§lﬁe>, (30a)

M,y = %(--lﬁ + iy — 1#9)’ O, = kGh (W +,), (30b)
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where

4
W) =D Coyr ™! 4wy (), (30c)
=1

4
YU = Dyl — 1) - ?<1 L(ker) - kTI;(km) Cs
=1

r

p
- EG K, (k.r) — kTK;(kfr)) Cs + (1), (30d)
r\r
4
Vi) = D Exoy = Dr? = 2 (Cslkar) 4 CaK (k) -+, (1), (30¢)
j=1

(w;,, lp;p, %p) are derivatives of the particular solutions in (28). Stresses are related to moment and
shear resultants by
6M, ij Qr

0 =5 ij=rr,00,r0, 1,,= e (1)

For a disk forced by p(r, 0) given by Eq. (12), divide the disk into two segments:

(1) In 0<r<r, where p,, is finite, Cs and two of the C; multiplying r* with Re(x;) <0 are dropped
for boundedness at r = 0. However, the derivatives of these coefficients are needed to obtain
the particular solution as in Egs. (27) and (28) in the method of variation of parameters.

(2) In r,<r<ry, where p,, = 0, all six C]’-s are kept.

Matching the state vectors {Q,, M,,, M9, w,,, l//O}T of the two parts at the interface r = r, and
satisfying one of the boundary conditions below gives for the

(1) free edge:

Mrr(rd) = Mr@(rd) = Qr(rd) = 0. (32‘1)
(2) simply supported edge:
Mrr(rd) = lﬂ(.)(l"d) = W(rd) =0. (32b)
(3) clamped edge:
w(rq) = ¥,(ra) = Yy(ra) = 0. (32¢)

This produces nine simultancous equations in the C}l’z) of the two segments.
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3. Dynamic analysis

The dynamic Mindlin’s plate equations are

D I
SIA = V¥ 4 (1 + V] — kGh (¥ + Vw) = pTzW’ (33)
) Pw
KGh(V-w+ ®)+p = phw,
ER
D=V, D=y (34)
Taking the divergence of Eq. (33),
2 2 ph’ @
DV*® — kGh (® + Vw) =T (35)
Eliminating @ from Egs. (34) and (35) gives
1 & 1 & 12 & 11 1 &
2 L O 2 L O IR P I S I v o R i
[(V c? 8[2> (V c? 812> + c2h? aﬂ] v [D kGh (V c? 6t2>} P
E kG
2 _ 2 _ -
c, = o0 -2y c; . (36)
Eliminating V?w from Egs. (34) and (35) yields
, ph? & B O*w
Taking the curl of Eq. (33):
D h e
[5(1 —W)V? — kGh — ‘)1—2 ﬁ] (V x ¥) =0, (38)

from which it can be inferred that (V x ¥) is not a function of w while ¥ may actually be
Y=V[gw]+VxT, (39)

where I' is a vector potential for ¥ independent of w. Substituting Eq. (39) into Eq. (37) and using
the definition of @ yields

S
[DV 7 22 \Y h 2 (40)
Substituting Eq. (39) into Eq. (38) using the identity
VxVxA=V(V-A)— VA (41)

produces

D 5 /A
—_ _ J— —_— —_— p— . 2
[2(1 WV —kGh—p 126[2} VT=0 (42)
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Defining t = V°I reduces Eq. (42) to

2_ =~ 2 7 | =
V- Ty aﬂ}r 0. (43)

For a solid disk and periodic motions in time with frequency w, the homogeneous solution of
Eq. (36) takes the form

w(r, 0, 1) = w(r)cosn@ e,  w(r) = CiJ,(r) + CoJ,(Jar), (44a,b)
12+ ¢2 (0 12
4 12 o _ £ K 2 _
A =2Ba7+ By =0, ,31—5 23 w”, ﬁz_c_§<c_§_h_2>’ (44¢)

where (r,0) are radial and circumferential co-ordinates, n is circumferential wave number, 1 =
v/ —1 and J, is the Bessel function. Since ¢(r) is a function of w, and from Eq. (8) linear with w, it
can be expressed like Egs. (44a, b) as

gi(r) = Cylu(yr), Vg =—ig j=1,2. (45)
Substituting Eq. (45) into Eq. (40) yields

2 2
w7 12w
- {_;,, *73] 5Cy =~ G (46)
then, using Eq. (36), Eq. (46) simplifies to
1 ,
Cy = i_]g(_ij - g) G;. 47)
Taking the gradient of Eq. (46),
0 n ,
Vo= (5 1) Cutatisn) @)

Furthermore, since T and ¥ are orthogonal and ¥ is in the plane of the disk then t = (0, 0,7,) and
7. = CJy(Ar 7). (49)
Substituting Eq. (49) into Eq. (43) produces the dispersion relation

2 207 121

Tl =ve? R (50)

Eq. (50) exhibits a cut-off above

w; = /6K (1 — v)% = \/L_ZCS, (51)

which is the same as that in Eq. (44¢). Finally, using k. in Eq. (50) and since I' and t are parallel,
then I' = (0, 0,I";), and

. = Crl(k.r). (52)
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Taking the curl of Eq. (52),

Vx I = <§ , —ﬁ> Crd (keor). (53)
r’- or
Substituting Egs. (48) and (53) into Eq. (39) determines the solutions
2
(1,0, 1) = cos nf ! { Cyididl (A1) + % Crl (k. r)}, (54a)
=1
W, (r, 0, 1) = sinnf ¢! {Z — Coyd (A1) — 2. CrY. (k, r)}, (54b)
j=1
) 2
w(r,0,1) = cosnf e > " Cilu(r), (54c)
i=1

where Cy; is related to C; by Eq. (47). Substituting Eq. (54) into Eq. (30), then in one of the
boundary conditions (32), produces the implicit eigenvalue problem

B(ry) C=0, (55a)
where B is a 3 x 3 matrix of the primitives in (\/,, ¥y, w) and their first derivatives, and
C = {C,,C,, Cr}". (55b)
Expanding (/,, g, w) in terms of the eigenset {wy;; 1, N @i}
N M
l//}’(V’ 0: l) = Z Z anj(l)nmj(r) Ccos }’10, (563)
n=0 j=1
N M
Yo(r,0,0) => > au(D)ng,(r) sin nd, (56b)
n=0 j=I
N M
w(r,0,0) = )" (1), (r) cos no), (56¢)

n=0 j=I1

where (M, N) are the number of radial and circumferential modes in the expansion. Substituting
Eq. (56) into Eq. (33) and (34) and enforcing the orthogonality of the eigenfunctions yields a set of
uncoupled differential equations in the generalized co-ordinates ay; :

. Dnj
Ay + w,zy' ayj = _ﬁf([)a
nj

N, = ph <(Pnj‘V(Pnj> + '01—};3{<11,,1_,\r17rnj> + <’7()nj}r770nj>] > (57)

where ( * ) is the time derivative, d,0 is the Kronecker delta, f(¢) is the time dependence of the
forcing pulse, and p,; is the generalized force,

Dnj = Pm /0 @, (r)r"r dr. (58)



M. El-Raheb | Journal of Sound and Vibration 261 (2003) 153-168 163

The solution of Eq. (57) is expressed as a Duhamel integral

ani(t) = _ﬂ/otf () sin @, (t — 1) dr. (59)

wnj Nnj
For periodic motions in time with frequency o, f(f) = ¢’ and Eq. (57) reduces to

DPnj
= —— 60
a Yy N,,J(a)fu _ 602) ( )

In the limit of w = 0 in Eq. (60), the static solution is recovered.

4. Results

In the parametric analysis to follow, a simply supported disk is assumed to have the following
nominal geometric and material properties: r; =3in, r, = 1in, E =45 x 10%psi, p =3 x
10~41bs?/in*, v = 0.25. The disk is forced by the asymmetric pressure given by Eq. (12) with
m = 2 and n = 3. Fig. 1 compares the stress distribution along r from the static solution in Section
1 (Figs. 1(a—d)), to that from the modal solution in Section 2 (Figs. 1(e-h)) with 60 modes in the
expansion. Except for the sharper discontinuity in 7,. at r = r, (compare Figs. 1(d) and (h)), the
closeness of results from distinctly different procedures validates the two methods. Note that all
variables peak at r = r,, and all stress component decay smoothly for r>r,, as the boundary is
approached. This trend suggests that the effect on dependent variable of boundary conditions will
diminish with n.

In a w(r) plot, 4, is the distance between the two intersections of w(r) with the line wy,,./2,
where w,,,, 1S maximum displacement. /,, termed the “influence width”, is a measure of the
spread of w over the disk radius. Fig. 2 shows how magnitude and shape of displacement w varies
with n for two thicknesses; 2 = 0.2 in (see Figs. 2(a—d)), and 4~ = 0.6 in (see Figs. 2(e-h)). For
n<3, J,~rq/2 (see Figs. 2(a) and (e)). As n increases, 4,, diminishes as w becomes confined to the
vicinity of r = r,. Comparing Figs. 2(a—d) and (e-h) shows that for a fixed », increasing 4 reduces
Ay slightly. Fig. 3 depicts the effect of r, on w. Comparing Figs. 3(a—d) and (a—d) reveals that a
smaller footprint r, reduces 4,, substantially. Plots of Wyux(7)/Wpax(2) in Fig. 4(a—c) and ,,(n)/rq
in Figs. 4(d—f) summarize the behavior in Figs. 2(a—d), 2(e-h) and 3(a—d) completely. Fig. 4(a—c)
shows that the decay of wy,, with n is somewhat insensitive to / and r,.

Finally, Fig. 5 plots w(r) for the axisymmetric case and the loading in Eq. (12) with n = 0. In
this case w;,,+(0) is two orders of magnitude larger than w,,,.(2). This implies that in order to
cause a comparable deformation, asymmetric imperfections in loading must be substantially
higher than the axisymmetric imperfections.

5. Conclusion

Exact static and dynamic solutions of Mindlin’s equations were derived for a disk loaded by an
asymmetric pressure. The Helmholtz vector decomposition is adopted to decouple displacement
and the two components of rotation. The method of variation of parameters determines the
particular solution. Results of the static solution are identical to those from a modal solution of
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the frequency response when frequency vanishes. A parameter /,, termed influence width,
measures the spread of w over the disk radius. w,,,, and 4,, diminish with #n, since w is confined
near the perimeter of the footprint. A thicker disk and a narrower footprint reduce 4,,, however, r,,
has a stronger effect. Axisymmetric displacement wy of the disk forced by the same pressure
intensity and radial distribution as that in the asymmetric case is two orders of magnitude larger
than w, for n =2 suggesting that the incremental displacement from asymmetric loading
imperfection is negligible.
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