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Abstract

An exact solution is presented for the static and dynamic asymmetric response of a disk governed by
Mindlin’s plate equations forced by a pressure that varies radially as rm: The static solution agrees with a
modal solution adopting the dynamic Mindlin’s plate equations in the limit when excitation frequency
vanishes. This solution is useful in sizing magnitude and shape of surface asymmetries on a disk from
pressure loading with slight eccentricity and circumferential non-uniformity.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Mindlin’s plate equations [1] represent a consistent approximation to the three-dimensional
elasto-dynamic equations. One essential feature of these equations is the finite speed of shear
waves which lacks in the classical Euler equations. In Cartesian co-ordinates, the equations are
separable, yet the solution converges slowly since the dependence along one axis is in terms of
hyperbolic functions. For a disk subjected to axisymmetric loading, exact solutions to Mindlin’s
static and dynamic equations have been treated extensively in the literature. However, the analysis
of the static and dynamic problems of a disk loaded asymmetrically is rare.
Karunasena et al. [2] treat the static axisymmetric response of a disk with annular supports

adopting Mindlin’s plate equations. Irons and Kennedy [3] treat the non-linear axisymmetric
frequency response of annular disks. Xiang et al. [4] treat linear axisymmetric frequency response
with concentric stiffeners. Soamidas and Ganesan [5] analyze variable thickness polar orthotropic
disks. Since 1989, most publications on disks concern magnetic storage devices and focus on
rotating thin disks with axisymmetric loading (see Refs. [6–9]). Jia and Lee [10] and Raman and
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Mote [11] treat linear asymmetric frequency response of a disk with angular imperfections in
properties adopting the classical Euler’s equation. Liew and Yang [12,13] solve the three-
dimensional free vibration problem of a solid disk and annular plate for symmetric and
asymmetric modes by an approximate polynomial-Ritz method.
In what follows, the general static Mindlin’s equations are solved exactly for a disk loaded by

an asymmetric pressure of the form pðr; yÞ ¼ pmrm cos ny acting over a footprint of radius rp;
where ðr; yÞ are radial and circumferential co-ordinates and n is circumferential wave number. This
loading simulates the asymmetry in pressure from eccentricity and circumferential non-
uniformity.
In the axisymmetric case, the state vector of dependent variables S has four components;

displacement w; radial rotation cr; and radial shear and moment resultants Qr;Mrr ) S ¼
fw;cr;Qr;Mrrg

T: The coupled fourth order system of equations yields four primitives and
independent constants sufficient to satisfy continuity of S at an interface of two adjacent disk
segments. In the asymmetric case, S includes two new dependent variables; circumferential
rotation cy and torsional moment resultant Mry ) S ¼ fw;cr;cy;Qr;Mrr;Mryg

T: The
equilibrium equation in cy raises the order of the system from fourth to sixth allowing for the
two additional primitives. To solve the coupled equations in fw;cr;cyg

T; uncoupled equations in
each variable are needed. Applying the Helmholtz decomposition to the rotation vector W �
fcr;cyg

T facilitates the process. W is expressed as the sum of the gradient of a scalar function and
the curl of a vector function, W ¼ =g þ =	 C; also known as the Helmholtz decomposition. In
the dynamic case, g is related to w by the inertia term, while in the static case g is independent of w:
The Helmholtz decomposition also applies to the particular solution.
Results from the static solution coincide with results from a different solution in which S is

expanded in terms of the dynamic eigenfunctions. Sections 1 and 2 derive exact solutions of the
static and dynamic Mindlin’s equations for a disk. Section 3 compares results from the two
solutions and presents sensitivity of displacement to disk thickness h; disk radius rd ; and footprint
radius rp:

2. Static analysis

Mindlin’s static plate equations may be written in vector form as

D

2
ð1
 nÞ=2W þ ð1þ nÞ=F
� �


 kGh ðW þ =wÞ ¼ 0; ð1Þ

kGh ðr2w þ FÞ þ p ¼ 0; F ¼ = � W; D ¼
Eh3

12ð1
 n2Þ
; ð2Þ

where W is the vector of rotations, w is the transverse displacement, ðr; nÞ are the density and
Poisson ratio, ðE; GÞ are Young’s and shear moduli, k is the shear constant, h is the thickness, p is
the applied pressure, r2 is the Laplacian and = is the gradient operator. Taking the divergence of
Eq. (1),

Dr2F
 kGhðFþr2wÞ ¼ 0: ð3Þ
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Eliminating F from Eqs. (2) and (3),

r4w ¼
1

D


1

kGh
r2

� �
p: ð4Þ

Eliminating r2w from Eqs. (2) and (3) yields

Dr2F ¼ 
p: ð5Þ

Taking the curl of Eq. (1),

D

2
ð1
 nÞr2 
 kGh

� �
ð=	 WÞ ¼ 0; ð6Þ

from which it can be inferred that ð=	 WÞ is not a function of w while W may be expressed as

W ¼ =g þ =	 C; ð7Þ

where C is a vector potential for W independent of w: Substituting Eq. (7) in Eq. (5) using the
definition of F yields

Dr4g ¼ 
p: ð8Þ

Substituting Eq. (7) into Eq. (6) using the identity

=	 =	 A ¼ =ð= � AÞ 
 =2A ð9Þ

produces

D

2
ð1
 nÞr2 
 kGh

� �
=2C ¼ 0: ð10Þ

Defining s ¼ =2 C in Eq. (10) yields

=2 

12k
h2

� �
s ¼ 0: ð11Þ

Furthermore, since s and W are orthogonal, and W is in the plane of the disk, then s ¼ ð0; 0; tzÞ
and C ¼ ð0; 0;GzÞ:
For a disk with radius rd ; assume separable expressions for pðr; yÞ :

pðr; yÞ ¼ pmðHðrÞ 
 Hðr 
 rpÞÞrm cos ny; ð12Þ

where rp is footprint radius. For nX2; a pðr; yÞ uniform along r with m ¼ 0 in Eq. (12) is
discontinuous along y at r ¼ 0: This sets the constraint that mX1: Based on the forcing function
in Eq. (12), w; cr; cy take the form

wðr; yÞ ¼ wnðrÞ cos ny; crðr; yÞ ¼ crnðrÞ cos ny; cyðr; yÞ ¼ cynðrÞ sin ny: ð13Þ

Expanding Eq. (7) in cylindrical co-ordinates,

ðcrn;cynÞ ¼
@

@r
;


n

r

� �
gn þ

n

r
;


@

@r

� �
Gzn: ð14Þ
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From Eqs. (4), (8) and (10), the homogeneous solutions of wn; gn and Gzn are

wnðrÞ ¼
X4
j¼1

CnjRnjðrÞ; gnðrÞ ¼
X4
j¼1

*CnjRnjðrÞ; ð15a;bÞ

GznðrÞ ¼ C5nInðktrÞ þ C6nKnðktrÞ; kt ¼
ffiffiffiffiffiffiffiffi
12k

p
=h; ð15cÞ

where RnjðrÞ are four primitives of the r4n operator and In;Kn are modified Bessel functions of
order n:
In what follows, the subscript n will be dropped from all dependent variables and constants of

integration for shortness. Also subscripts h and p will refer to the homogeneous and particular
solutions, respectively. Eq. (4) admits primitives in the form

RðrÞ ¼ ra: ð16aÞ

Substituting Eq. (16a) into the homogeneous part of Eq. (4) yields the characteristic equation

ða2 
 n2Þðða
 2Þ2 
 n2Þ ¼ 0: ð16bÞ

For n ¼ 0; Eq. (16b) admits a double root a ¼ 0; and a double root a ¼ 2 yielding a homogeneous
solution:

whðrÞ ¼ C1r
2 þ C2r

2 ln r þ C3 þ C4 ln r; n ¼ 0: ð16cÞ

For nX2; Eq. (16b) admits the roots

a ¼ 7n; a ¼ 7n þ 2 ð16dÞ

with solution

whðrÞ ¼
X4
j¼1

Cjr
aj ; nX2: ð17Þ

To determine the contribution of rg to fcr;cyg in Eq. (14), eliminate cy from the first of Eqs. (1)
and (2):

c00
r þ

3

r
c0

r þ
ð1
 n2Þ

r2
cr 
 k2tcr ¼ 


2

r
þ

ð1þ nÞ
ð1
 nÞ

@

@r

� �
r2w þ

pðrÞ
kGh

� �
: ð18Þ

From Eqs. (14) and (15b), the homogeneous solution of cr has the form

crhðrÞ ¼ D1r
n
1 þ D2r


n
1 þ D3r
nþ1 þ D4r


nþ1: ð19Þ

Substituting Eqs. (19) and (17) into Eq. (18) and equating coefficients of the same powers of r to
zero yields


 D1k
2
t þ 4D3ð1þ nÞ ¼ C1k

2
tn þ 4C3ð1þ nÞ 
2þ

1þ n
1
 n

n

� �
;


 D2k
2
t þ 4D4ð1
 nÞ ¼ 
C2k

2
tn 
 4C4ð1
 nÞ 2þ

1þ n
1
 n

n

� �
;


 D3k
2
t ¼ C3k

2
t ðn þ 2Þ; 
D4k

2
t ¼ C4k

2
t ð
n þ 2Þ: ð20aÞ
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Solving for Di in terms of Ci :

D1 ¼ 
 nC1 

8nð1þ nÞ
k2t ð1
 nÞ

; C3D3 ¼ 
ðn þ 2ÞC3;

D2 ¼ nC2 þ
8nð1
 nÞ
k2t ð1
 nÞ

; C4D4 ¼ 
ð
n þ 2ÞC4: ð20bÞ

From Eq. (2),

cyh ¼ 

r

n
c0

rh þ
1

r
crh þr2wh

� �
: ð21Þ

From Eqs. (14) and (15b), the form of cyh is

cyhðrÞ ¼ E1r
n
1 þ E2r


n
1 þ E3r
nþ1 þ E4r


nþ1: ð22Þ

Substituting Eqs. (17), (19) and (22) into Eq. (21) and equating coefficients of equal powers
of r yields

E1 ¼ nC1 þ
8nð1þ nÞ
k2t ð1
 nÞ

C3; E3 ¼ nC3;

E2 ¼ nC2 þ
8nð1
 nÞ
k2t ð1
 nÞ

C4; E4 ¼ nC4: ð23Þ

Adding the contribution of =	 C in Eq. (14) to Eqs. (19) and (22) determines the complete
homogeneous solution of fcr;cyg :

crhðrÞ ¼ D1r
n
1 þ D2r


n
1 þ D3r
nþ1 þ D4r


nþ1 þ
n

r
ðC5InðktrÞ þ C6KnðktrÞÞ;

cyhðrÞ ¼ E1r
n
1 þ E2r


n
1 þ E3r
nþ1 þ E4r


nþ1 
 ktðC5I0nðktrÞ þ C6K
0
nðktrÞÞ: ð24Þ

The particular solution wp of Eq. (4) is determined by the method of variation of parameters. In
Eq. (17), assume Cj ¼ CjðrÞ :

(1) Evaluate w0; w00; w000 ; and w
0000
where ðÞ0 is partial derivative with respect to r:

(2) For the first three derivatives equate terms including C0
rðrÞ to zero.

(3) Substitute the derivatives in Eq. (4).

This yields four simultaneous equations in C0
j : For nX2; changing variables to

bj ¼
D

pm

C0
j ðrÞr

aj
3
m ð25aÞ

eliminates the r dependence from these equations yielding

Mb ¼ U; ð25bÞ

M1;j ¼ 1; M2;j ¼ aj;

M3;j ¼ ajðaj 
 1Þ; M4;j ¼ ajðaj 
 1Þðaj 
 2Þ; ðj ¼ 1; 4Þ;

Ui ¼ d4i; b ¼ b1; b2;b3;b4

 �T

;
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where d4i is the Kronecker delta. Solving for bj in Eq. (25b), integrating C0
jðrÞ in Eq. (25a), then

substituting Cj back into Eq. (17) produces

wpðrÞ ¼
pm

D

X4
j¼1

bj

r4þm

4þ m 
 aj



Zðm2 
 n2Þr2þm

2þ m 
 aj

� �
¼

pm

D

rmþ4

mmn4mmn2



Zrmþ2

mmn2

� �
;

mmnj ¼ððm þ jÞ2 
 n2Þ; Z ¼
h2

6ð1
 nÞk
: ð26Þ

Similarly, the particular solution gpðrÞ in Eq. (8) is

gpðrÞ ¼ 

pm

D

rmþ4

mmn4mmn2

: ð27Þ

Since the Helmholtz decomposition (14) also applies to the particular solution ðcrp;cypÞ; then

crpðrÞ ¼
@gp

@r
¼ 


pm

D

X4
j¼1

bj

ðm þ 4Þr3þm

4þ m 
 aj

¼ 

pm

D

ðm þ 4Þrmþ3

mmn4mmn2

;

cypðrÞ ¼ 

ngp

r
¼

pm

D

X4
j¼1

bj

nr3þm

4þ m 
 aj

¼
pm

D

nrmþ3

mmn4mmn2

: ð28Þ

When mmn2 ¼ 0; the particular solutions in Eqs. (26) and (28) reduce to

wpðrÞ ¼
1

4n2
pm

D
xpðrÞ 


Z
2n

pm

D
rn ln r 


rmþ2

ðm þ 2þ nÞ

� 

;

xpðrÞ ¼
1

2
1


1

n þ 1

� �
ln r 


1

4
1


1

ðn þ 1Þ2

� �� �
rnþ2 þ

2nrmþ4

ðm þ 2þ nÞmmn4

� 

;

crðrÞ ¼ 

1

4n2
pm

D

@xpðrÞ
@r

; cyðrÞ ¼
1

4n

pm

D

xpðrÞ
r

; ð29aÞ

and when mmn4 ¼ 0; they reduce to

wpðrÞ ¼
pm

2Dnmmn2

BpðrÞ 

pmZ
D

rmþ2

mmn2y
;

BpðrÞ ¼ rn ln r 

rmþ4

m þ 4þ n

� �
;

crðrÞ ¼
pm

2Dnmmn2

@BpðrÞ
@r

; cyðrÞ ¼
pm

2Dmmn2

BpðrÞ
r

: ð29bÞ

Eq. (17) and (24) for the homogeneous parts, and Eqs. (26) and (28) or alternatively Eq. (29) for
the particular parts, represent the exact solution to the problem.
Constitutive relations for moment and shear resultants are

Mrr ¼ D c0
r þ n

cr

r
þ

n

r
cy

� �� �
; Myy ¼ D nc0

r þ
cr

r
þ

n

r
cy

� �
; ð30aÞ

Mry ¼
Dð1
 nÞ
2



n

r
cr þ c0

y 

cy

r

� �
; Qr ¼ kGh ðw0 þ crÞ; ð30bÞ
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where

w0ðrÞ ¼
X4
j¼1

Cjajr
aj
1 þ w0

pðrÞ; ð30cÞ

c0
rðrÞ ¼

X4
j¼1

Djðaj 
 1Þ raj
2 

n

r

1

r
InðktrÞ 
 ktI

0
nðktrÞ

� �
C5



n

r

1

r
Kn ðktrÞ 
 ktK

0
nðktrÞ

� �
C6 þ c0

rpðrÞ; ð30dÞ

c0
yðrÞ ¼

X4
j¼1

Ejðaj 
 1Þraj
2 
 k2t C5I
00
n ktrð Þ þ C6K

00
nðktrÞ

� �
þ c0

ypðrÞ: ð30eÞ

ðw0
p;c

0
rp;c

0
ypÞ are derivatives of the particular solutions in (28). Stresses are related to moment and

shear resultants by

sij ¼
6Mij

h2
; ij � rr; yy; ry; trz ¼

Qr

h
: ð31Þ

For a disk forced by pðr; yÞ given by Eq. (12), divide the disk into two segments:

(1) In 0prprp where pm is finite, C6 and two of the Cj multiplying raj with Re(aj)o0 are dropped
for boundedness at r ¼ 0: However, the derivatives of these coefficients are needed to obtain
the particular solution as in Eqs. (27) and (28) in the method of variation of parameters.

(2) In rpprprd ; where pm ¼ 0; all six C0
js are kept.

Matching the state vectors fQr;Mrr;Mry;w;cr;cyg
T of the two parts at the interface r ¼ rp and

satisfying one of the boundary conditions below gives for the

(1) free edge:

MrrðrdÞ � MryðrdÞ � QrðrdÞ ¼ 0: ð32aÞ

(2) simply supported edge:

MrrðrdÞ � cyðrdÞ � wðrd Þ ¼ 0: ð32bÞ

(3) clamped edge:

wðrdÞ � crðrdÞ � cyðrdÞ � 0: ð32cÞ

This produces nine simultaneous equations in the C
ð1;2Þ
j of the two segments.
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3. Dynamic analysis

The dynamic Mindlin’s plate equations are

D

2
ð1
 nÞ=2W þ ð1þ nÞ=F
� �


 kGh ðW þ =wÞ ¼
rh3

12

@2W
@t2

; ð33Þ

kGh ðr2w þ FÞ þ p ¼ rh
@2w

@t2
;

F ¼ = � W; D ¼
Eh3

12ð1
 n2Þ
: ð34Þ

Taking the divergence of Eq. (33),

Dr2F
 kGh Fþr2w
� �

¼
rh3

12

@2F
@t2

: ð35Þ

Eliminating F from Eqs. (34) and (35) gives

r2 

1

c2e

@2

@t2

� �
r2 


1

c2s

@2

@t2

� �
þ
12

c2eh
2

@2

@t2

� �
w ¼

1

D


1

kGh
r2 


1

c2e

@2

@t2

� �� �
p;

c2e ¼
E

r ð1
 n2Þ
; c2s ¼

kG

r
: ð36Þ

Eliminating r2w from Eqs. (34) and (35) yields

Dr2 

rh3

12

@2

@t2

� �
F ¼ rh

@2w

@t2

 p: ð37Þ

Taking the curl of Eq. (33):

D

2
ð1
 nÞ r2 
 kGh 


rh3

12

@2

@t2

� �
ð=	 WÞ ¼ 0; ð38Þ

from which it can be inferred that ð=	 WÞ is not a function of w while W may actually be

W ¼ = gðwÞ½ � þ =	 C; ð39Þ

where C is a vector potential for W independent of w: Substituting Eq. (39) into Eq. (37) and using
the definition of F yields

Dr2 

rh3

12

@2

@t2

� �
r2g ¼ rh

@2w

@t2
: ð40Þ

Substituting Eq. (39) into Eq. (38) using the identity

=	 =	 A ¼ = ð= � AÞ 
 r2A ð41Þ

produces

D

2
ð1
 nÞ r2 
 kGh 
 r

h3

12

@2

@t2

� �
=2C ¼ 0: ð42Þ
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Defining s ¼ =2C reduces Eq. (42) to

r2 

12k
h2



2

ð1
 nÞ c2e

@2

@t2

� �
s ¼ 0: ð43Þ

For a solid disk and periodic motions in time with frequency o; the homogeneous solution of
Eq. (36) takes the form

wðr; y; tÞ ¼ wðrÞcos ny eiot; wðrÞ ¼ C1Jnðl1rÞ þ C2Jnðl2rÞ; ð44a;bÞ

l4 
 2 b1l
2 þ b2 ¼ 0; b1 ¼

1

2

c2e þ c2s
c2e c2s

o2; b2 ¼
o2

c2e

o2

c2s


12

h2

� �
; ð44cÞ

where ðr; yÞ are radial and circumferential co-ordinates, n is circumferential wave number, i ¼ffiffiffiffiffiffiffi

1

p
and Jn is the Bessel function. Since gðrÞ is a function of w; and from Eq. (8) linear with w; it

can be expressed like Eqs. (44a, b) as

gjðrÞ ¼ CgJnðlj rÞ; r2gj ¼ 
l2j gj; j ¼ 1; 2: ð45Þ

Substituting Eq. (45) into Eq. (40) yields


 
l2j þ
o2

c2e

� �
l2j Cgj ¼ 


12o2

h2 c2e
Cj; ð46Þ

then, using Eq. (36), Eq. (46) simplifies to

Cgj ¼
1

l2j

l2j 


o2

c2s

� �
Cj: ð47Þ

Taking the gradient of Eq. (46),

rgj ¼
@

@r
;


n

r

� �
CgjJnðlj rÞ: ð48Þ

Furthermore, since s andW are orthogonal andW is in the plane of the disk then s ¼ ð0; 0; tzÞ and

tz ¼ CtJnðlt rÞ: ð49Þ

Substituting Eq. (49) into Eq. (43) produces the dispersion relation

k2t ¼
2o2

1
 nð Þ c2e


12k
h2

: ð50Þ

Eq. (50) exhibits a cut-off above

ot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6k ð1
 nÞ

p ce

h
¼

ffiffiffiffiffi
12

p
cs

h
; ð51Þ

which is the same as that in Eq. (44c). Finally, using kt in Eq. (50) and since C and s are parallel,
then C ¼ 0; 0;Gzð Þ; and

Gz ¼ CGJnðktrÞ: ð52Þ
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Taking the curl of Eq. (52),

=	 C ¼
n

r
;


@

@r

� �
CGJnðktrÞ: ð53Þ

Substituting Eqs. (48) and (53) into Eq. (39) determines the solutions

crðr; y; tÞ ¼ cos ny eiot
X2
j¼1

CgjljJ
0
nðljrÞ þ

n

r
CGJnðkt rÞ

( )
; ð54aÞ

crðr; y; tÞ ¼ sin ny eiot
X2
j¼1



n

r
CgjJ

0
nðljrÞ 
 ltCGJ

0
nðkt rÞ

( )
; ð54bÞ

wðr; y; tÞ ¼ cos ny eiot
X2
i¼1

CjJnðljrÞ; ð54cÞ

where Cgi is related to Ci by Eq. (47). Substituting Eq. (54) into Eq. (30), then in one of the
boundary conditions (32), produces the implicit eigenvalue problem

B ðrd Þ C ¼ 0; ð55aÞ

where B is a 3	 3 matrix of the primitives in ðcr;cy;wÞ and their first derivatives, and

C ¼ fCg1 ;Cg2 ;CGg
T: ð55bÞ

Expanding ðcr;cy;wÞ in terms of the eigenset fonj; Zrnj ; Zynj;jnjg:

crðr; y; tÞ ¼
XN

n¼0

XM

j¼1

anjðtÞZrnjðrÞ cos ny; ð56aÞ

cyðr; y; tÞ ¼
XN

n¼0

XM

j¼1

anjðtÞZynjðrÞ sin ny; ð56bÞ

wðr; y; tÞ ¼
XN

n¼0

XM

j¼1

anjðtÞjnjðrÞ cos ny; ð56cÞ

where ðM;NÞ are the number of radial and circumferential modes in the expansion. Substituting
Eq. (56) into Eq. (33) and (34) and enforcing the orthogonality of the eigenfunctions yields a set of
uncoupled differential equations in the generalized co-ordinates anj :

.anj þ o2nj anj ¼ 

pnj

Nnj

f ðtÞ;

Nnj ¼ rh jnj rjnj

�� ED
þ
rh3

12
Zrnj rZrnj

�� E
þ Zynj rZynj

�� EDDh i
; ð57Þ

where ð d Þ is the time derivative, dn0 is the Kronecker delta, f ðtÞ is the time dependence of the
forcing pulse, and pnj is the generalized force,

pnj ¼ pm

Z rp

0

jnjðrÞr
mr dr: ð58Þ
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The solution of Eq. (57) is expressed as a Duhamel integral

anjðtÞ ¼ 

pnj

onj Nnj

Z t

0

f ðtÞ sinonj ðt 
 tÞ dt: ð59Þ

For periodic motions in time with frequency o; f ðtÞ ¼ eiot and Eq. (57) reduces to

anj ¼ 

pnj

Nnjðo2nj 
 o2Þ
: ð60Þ

In the limit of o ¼ 0 in Eq. (60), the static solution is recovered.

4. Results

In the parametric analysis to follow, a simply supported disk is assumed to have the following
nominal geometric and material properties: rd ¼ 3 in; rp ¼ 1 in; E ¼ 45	 106 psi; r ¼ 3	
10
4 lb s2=in4; n ¼ 0:25: The disk is forced by the asymmetric pressure given by Eq. (12) with
m ¼ 2 and n ¼ 3: Fig. 1 compares the stress distribution along r from the static solution in Section
1 (Figs. 1(a–d)), to that from the modal solution in Section 2 (Figs. 1(e–h)) with 60 modes in the
expansion. Except for the sharper discontinuity in trz at r ¼ rp (compare Figs. 1(d) and (h)), the
closeness of results from distinctly different procedures validates the two methods. Note that all
variables peak at r ¼ rp; and all stress component decay smoothly for r > rp; as the boundary is
approached. This trend suggests that the effect on dependent variable of boundary conditions will
diminish with n:
In a wðrÞ plot, lw is the distance between the two intersections of wðrÞ with the line wmax=2;

where wmax is maximum displacement. lw; termed the ‘‘influence width’’, is a measure of the
spread of w over the disk radius. Fig. 2 shows how magnitude and shape of displacement w varies
with n for two thicknesses; h ¼ 0:2 in (see Figs. 2(a–d)), and h ¼ 0:6 in (see Figs. 2(e–h)). For
np3; lwCrd=2 (see Figs. 2(a) and (e)). As n increases, lw diminishes as w becomes confined to the
vicinity of r ¼ rp: Comparing Figs. 2(a–d) and (e–h) shows that for a fixed n; increasing h reduces
lw slightly. Fig. 3 depicts the effect of rp on w: Comparing Figs. 3(a–d) and (a–d) reveals that a
smaller footprint rp reduces lw substantially. Plots of wmaxðnÞ=wmaxð2Þ in Fig. 4(a–c) and lwðnÞ=rd

in Figs. 4(d–f) summarize the behavior in Figs. 2(a–d), 2(e–h) and 3(a–d) completely. Fig. 4(a–c)
shows that the decay of wmax with n is somewhat insensitive to h and rp:
Finally, Fig. 5 plots wðrÞ for the axisymmetric case and the loading in Eq. (12) with n ¼ 0: In

this case wmaxð0Þ is two orders of magnitude larger than wmaxð2Þ: This implies that in order to
cause a comparable deformation, asymmetric imperfections in loading must be substantially
higher than the axisymmetric imperfections.

5. Conclusion

Exact static and dynamic solutions of Mindlin’s equations were derived for a disk loaded by an
asymmetric pressure. The Helmholtz vector decomposition is adopted to decouple displacement
and the two components of rotation. The method of variation of parameters determines the
particular solution. Results of the static solution are identical to those from a modal solution of
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Fig. 1. Comparison of static response from exact and modal solutions ðh ¼ 0:2 in; rp ¼ 1 in; n ¼ 3Þ: Static solution: (a)
w; (b) srr; (c) syy; (d) trz; Modal solution: (e) w; (f) srr; (g) syy; (h) trz:

M. El-Raheb / Journal of Sound and Vibration 261 (2003) 153–168164



Fig. 2. Effect of h on static w for rp ¼ 1 in; h ¼ 0:2 in : (a) n ¼ 2; (b) n ¼ 3; (c) n ¼ 5; (d) n ¼ 7; h ¼ 0:6 in : (e) n ¼ 2; (f)
n ¼ 3; (g) n ¼ 5; (h) n ¼ 7:
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Fig. 3. Static w for rp ¼ 0:5 in; h ¼ 0:2 in : (a) n ¼ 2; (b) n ¼ 3; (c) n ¼ 5; (d) n ¼ 7:
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Fig. 4. Variation of wmaxðnÞ=wmaxð2Þ with n: (a) h ¼ 0:2 in; rp ¼ 1 in; (b) h ¼ 0:6 in; rp ¼ 1 in; (c) h ¼ 0:2 in; rp ¼ 0:5 in;
and variation of lw=rd with n: (d) h ¼ 0:2 in; rp ¼ 1 in; (e) h ¼ 0:6 in; rp ¼ 1 in; (f) h ¼ 0:2 in; rp ¼ 0:5 in:

Fig. 5. wðrÞ for axisymmetric loading ðn ¼ 0Þ:
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the frequency response when frequency vanishes. A parameter lw; termed influence width,
measures the spread of w over the disk radius. wmax and lw diminish with n; since w is confined
near the perimeter of the footprint. A thicker disk and a narrower footprint reduce lw; however, rp

has a stronger effect. Axisymmetric displacement w0 of the disk forced by the same pressure
intensity and radial distribution as that in the asymmetric case is two orders of magnitude larger
than wn for n ¼ 2 suggesting that the incremental displacement from asymmetric loading
imperfection is negligible.
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